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Irrelevance of spatial correlations in models with extremal dynamics
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The relevance of spatial correlations set up in the quenched disorder by extremal dynamics is studied both
analytically and by numerical simulations. We find that these correlations, although present in systems of small
sizeL, vanish in the thermodynamic limit.@S1063-651X~97!01105-7#

PACS number~s!: 02.50.2r, 05.40.1j, 05.90.1m
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Self-organized critical models@1# with extremal dynamics
have attracted significant attention recently. Many phys
phenomena belong to this class of models: fluid displa
ment in porous disordered media@2#, interface depinning@3#,
punctuated biological evolution@1#. In these models, at eac
time step the dynamical activity is concentrated on the
with the extremal value of the quenched disorder. This r
leads to a rich and complex behavior, which has been wid
studied@4#.

Recently, we introduced a theoretical approach for
study of these models@5–7#. This method is based on
quenched-stochastic transformation@5#, also called run time
statistics~RTS!, which maps the extremal dynamics onto
stochastic process characterized by a probability distribu
for the elementary dynamical events. This mapping ma
possible the application of a real space technique, such a
fixed scale transformation@8# or the real space renormaliza
tion group@7#, for the analysis of the self-organized critic
properties of the models and the computation of their criti
exponents. The RTS, as well as other theoretical approa
@4#, assumes that the quenched variables representing the
order of the system are independent.

In fact, this assumption seems to be only an approxim
tion @6,9#, at least for finite system sizeL. In this paper we
perform a theoretical and numerical analysis of the releva
of correlations in problems with extremal dynamics, provi
that correlations among disorder variables vanish in the t
modynamic~infinite size! limit.

The basic idea of the RTS is to encode the effects
disorder into aneffective, time dependent, probability densit
of the quenched variables~for details see@5,6#!. Extremal
dynamics, as in invasion percolation, is based on the ch
of the smallest disorder variable among those which are
gible for growth~which we shall callactivevariables here-
after!. In invasion percolation, a variable becomes act
only when it is ‘‘touched’’ by the growing cluster. The pa
growth history of extremal dynamics builds up memory
fects in the system. These can be encoded into the distr
tion pt(x1 ,x2 , . . . ,xn) of the active variables, which ac
quires an explicit time dependence. The crucial point, wh
we are going to address here, is that it is assumed tha
collective probability density of the disorder at any timet
factorizes:
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pt~x1 ,x2 , . . . ,xn!5)
i51

n

r i ,t~xi !. ~1!

Before entering the detailed discussion of this approxim
tion, it is worthwhile spending some more words on the n
ture of the time dependence induced by extremal dynam
Let us assign an aget i5t2t0 to the variablexi . Here t is
the actual time andt0 is the time at which the variablexi
became active. Clearly, variables that became active at
same timet0 and which have the same aget experienced the
same history. Variables which experienced the same his
have the same effective probability densities. For this reas
we can express the single variable probability dens
r i ,t(x) in terms of the aget i of the active variablexi :
r i ,t(x)5pt i ,t

(x).
In general Eq.~1! is not exact. Indeed, extremal dynami

sets up long range spatial correlations between quenc
variables and the distribution of disorder is no longer fact
izable. We shall see, however, that these correlations,
though relevant for small system sizes,vanish in the thermo-
dynamic limit. Usually, one is interested in the critica
properties of extremal models in the thermodynamic lim
Therefore our results support the validity of the assumpt
of independence made in the RTS, when one is dealing w
large scale systems. Our analysis does not exclude the p
ence of short range correlations, but they are irrelevant in
scale invariant regime.

An elementary way to compute the spatial correlatio
between variables set up by extremal dynamics is the follo
ing. Let us considerL independent uniform variableei .
Then, let us impose on them the conditionei>e1 for all
i52, . . . ,L. This condition is, e.g., imposed in the first tim
step of the extremal dynamics for the Bak and Sneppen~BS!
model. With the conditionei>e1, the distribution of theei is
no longer that of independent variables. A straightforwa
calculation shows that the~marginal! distribution of one of
the variables is

p1~x!5
L

L21
@12~12x!L21#

while that of a pair of variables is
7745 © 1997 The American Physical Society
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p2~x,y!5
L11

L21
$u~y2x!@12~12x!L#1u~x2y!

3@12~12y!L#%.

This is clearly not factorizable. However, it is easy to che
that the correlation

^eiej&2^ei&^ej&5
L

4~L11!2~L12!
;

1

L2
~2!

vanishes asL→`. This suggests that the corrections to E
~1! vanish in the limitL→`.

If, already at the first time step, the dynamics sets u
correlation between variables, it is compelling to show t
the correlation remains small asL→`. Note thatL in mod-
els like invasion percolation in radial geometry is the size
the cluster which equals the time,t5L, so that the limit
L→` is the asymptotic time limit in this case. Let us no
try to extend our analysis to the correlation between t
variablese1 and e2 with age t, for a system of fixed size
L. Consider two variablese1 ande2 with aget for an inva-
sion percolation cluster of sizeL. Imagine to rank order the
L variables from the smallest minei to the largest maxei . Let
k1 andk2 be the ranking ofe1 ande2, respectively. One ha
that ki.t for i51,2 because at leastt uniform variables,
among theL, were found to be smaller thane1 ande2. We
want to compute the distribution ofe i .

The distribution of thekst amongL uniform variables is

Qk~x!5LS L21
k21 D xk21~12x!L2k.

Assuming that the order of the variablesei can be any be-
tween t11 andL ~with equal probability!, one might say
that

pt~x!5
1

L2t (
k5t11

L

Qk~x!

is the distribution of theei . In this approximation, one find

^ei&t5E
0

1

pt~x!x dx5
L1t11

2~L11!
.

Then we can address the question of what is the joint dis
bution of two variables with aget. First we recall that the
joint distribution of thekth and thej th variable (j.k) is
@10#

Qk, j~x,y!5
u~y2x!G~L11!

G~k!G~ j2k!G~L2 j11!

3xk21~y2x! j2k21~12y!L2 j ,

wherex is the value assumed by thekth variable andy that
of the j th.

The joint distribution ofe1 ande2 can again be compute
by assuming that, apart from being bigger thant, k and j can
be any index, and therefore
k

.
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p̃t~x,y!5
1

L2t21 (
k5t11

L21
1

L2k (
j5k11

L

Qk, j~x,y!

for x,y,

whereas forx.y, p̃t(y,x) is given by the same formula with
Qk, j (y,x).

Now one can calculate the value o
Š(e12^e1&)(e22^e2&)‹ and therefore the correlation buildu
between two variables int steps of the extremal dynamics
One has

^x&k5E
0

1

uk~x!x dx5
k

L11
,

^xy&k, j5E
0

1E
0

y

Qk, j~x,y!xy dx dy5
k~ j11!

~L11!~L12!
,

then

sk, j5^xy&k, j2^x&k^y& j5
k~L2 j11!

~L12!~L11!2
.

Then the correlation is the average of this fork.t and
j.k:

st5
1

L2t21 (
k5t11

L21
1

L2k (
j5k11

L

sk, j

5
L21Lt12t22t214L

12~L12!~L11!2
;
1

L
. ~3!

Therefore one expects a correlation of order 1/L among two
variables of the system.

In order to support this result, we also performed nume
cal simulations. It is worth pointing out that correlations bu
up by extremal dynamics are global in the sense that t
depend only on the agest i of the variables and not on the
spatial position. The persistence of activity in the dynam
of a particular model, however, builds a particular spa
distribution of age variables and this yields a spatial corre
tion. Therefore correlations can be investigated directly
studying the spatial correlation among variables.

We performed numerical simulations of the simple
model with extremal dynamics, the Bak and Sneppen mo
in one dimension, and studied the behavior of spatial co
lations for different sizesL of the system. We follow the
method given in Ref.@11#, which is able to detect the pres
ence of very weak long range~power law! correlations be-
tween the variablesxi . We study the function

s~r !5(
i51

r

~xi2 x̄!, ~4!

wherer is the distance~in lattice units! between the first and
the last variable, andx̄51/L( i51

L xi is the mean value of the
quenched disordered variables. For variables with no lo
range correlations~this is the case of quenched variables
time t50), one has
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FIG. 1. The temporal evolution of the function„^s(r )2&…1/2 in the BS model, for some values of the system size:~a! L5128; ~b!
L5512; ~c! L52048;~d! L58192. The time ranges fromt50 ~no long range correlations! to a time step corresponding to the asympto
critical regime.
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@^s~r !2&#1/2;r b with b50.5, ~5!

where the mean is over the realizations of the disorder. A
deviation from 0.5 in the scaling exponentb shows the pres-
ence of long range spatial correlations between quenc
variables. We performed numerical simulations of the B
and Sneppen model forL5 128,512,2048,8192. For eac
value ofL we computed the function„^s t(r )

2&…1/2 for differ-
ent times, fromt50 ~no long range correlations! to a time
step corresponding to the stationary state of the system~it
varies depending on the size of the system; typically it g
up to t55.03106 for L52048,8192). To get a better stati
tics we mediates t(r )

2 over all the possible starting point
r 0. In Figs. 1~a!–1~d! we show the behavior o
„^s t(r )

2&…1/2 at different times for the different sizes of th
system. The falling down of„^s(r )2&…1/2 for large values of
r is not surprising, because one sees from Eq.~4! that
s t(r5L)50. It is a finite size effect. We note tha
„^s(r )2&…1/2 changes in time until it achieves a steady sta
We computed by a least squares fit the scaling exponen
the small r part of „^s(r )2&…1/2 for t50 ~as a test of the
y

ed
k

s

.
of

validity of the method! and in the steady state, for the diffe
ent values ofL. In Table I we show the value of the expone
b at t50 and in the critical steady state for different sizes
the system. As one can see, while the value ofb for the
t50 ~no long range correlations! case is stable as the siz
L of the system grows, the values of the scaling exponen
the steady state, where extremal dynamics built up corr
tions between the variables, seem to converge in the l
L→` toward the valueb50.5. So, from numerical simula
tions we get

TABLE I. Values of the scaling exponentb, for
L5128,512,2048,8192 at timet50 ~no long range correlations!
and in the steady state.

L b t50 bsteady

128 0.4860.02 0.6260.02
512 0.5060.02 0.5860.02
2048 0.5060.01 0.5460.01
8192 0.5060.01 0.5060.01
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lim
L→`

bsteady~L !50.5, ~6!

which supports qualitatively our analytical results. Sh
range spatial correlations could eventually be present in
extremal model, but they disappear after a rescaling of
system. Therefore they are irrelevant for the critical prop
ties.

Our results fit those of Ref.@4#. There it was shown that
in the BS model for example, the asymptotic state is cha
terized by a fractal set of active variables, with fractal dime
s.
t
ur
e
r-

c-
-

siondf,1, for the one-dimensional BS model. This implie
that the weight of active, correlated, variables vanishes in
thermodynamic limit asL2(d2df ).

In this paper we showed, both by an analytical argum
and by numerical simulations, that spatial correlations
tween variables in extremal models are a finite size eff
which vanishes in the thermodynamic limit. This result su
ports the basic assumption made in the quenched-stoch
transformation@5,9# and suggests that this mapping is exa
in the limit L→` of a large number of variables.
ys.
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