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Irrelevance of spatial correlations in models with extremal dynamics
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The relevance of spatial correlations set up in the quenched disorder by extremal dynamics is studied both
analytically and by numerical simulations. We find that these correlations, although present in systems of small
sizelL, vanish in the thermodynamic limifS1063-651X%97)01105-7

PACS numbsg(s): 02.50-r, 05.40++j, 05.90+m

Self-organized critical mode[d] with extremal dynamics n
have attracted significant attention recently. Many physical Pe(X1, Xz, - . X =11 pi+(Xi). Q)
phenomena belong to this class of models: fluid displace- =1
ment in porous disordered medi|, interface depinning3],
punctuated biological evolutigri]. In these models, at eac
time step the dynamical activity is concentrated on the sit
with the extremal value of the quenched disorder. This ruld
leads to a rich and complex behavior, which has been widel
studied[4].

Recently, we introduced a theoretical approach for th

study of these modelg5—7]. This method is based on a i : . ; )
quenched-stochastic transformatid, also called run time S2@me history. Variables which experienced the same history

statistics(RTS), which maps the extremal dynamics onto ahave the same effective probability_densities. Fo_r_this reason,
stochastic process characterized by a probability distributiol/¢ ¢an express the single variable probability density
for the elementary dynamical events. This mapping make&it(X) in terms of the ager; of the active variablex;:
possible the application of a real space technique, such as tHet(X) =Pz +(X).

fixed scale transformatiof8] or the real space renormaliza-  In general Eq(1) is not exact. Indeed, extremal dynamics
tion group[7], for the analysis of the self-organized critical Seéts up long range spatial correlations between quenched
properties of the models and the computation of their criticavariables and the distribution of disorder is no longer factor-
exponents. The RTS, as well as other theoretical approachézable. We shall see, however, that these correlations, al-
[4], assumes that the quenched variables representing the df§ough relevant for small system sizeanish in the thermo-
order of the system are independent. dynamic limit Usually, one is interested in the critical

In fact, this assumption seems to be only an approximaproperties of extremal models in the thermodynamic limit.
tion [6,9], at least for finite system sizZe. In this paper we Therefore our results support the validity of the assumption
perform a theoretical and numerical analysis of the relevancef independence made in the RTS, when one is dealing with
of correlations in problems with extremal dynamics, provinglarge scale systems. Our analysis does not exclude the pres-
that correlations among disorder variables vanish in the theience of short range correlations, but they are irrelevant in the
modynamic(infinite size limit. scale invariant regime.

The basic idea of the RTS is to encode the effects of An elementary way to compute the spatial correlations
disorder into areffective time dependent, probability density between variables set up by extremal dynamics is the follow-
of the quenched variablegor details se€5,6]). Extremal ing. Let us considel independent uniform variable; .
dynamics, as in invasion percolation, is based on the choic&hen, let us impose on them the conditie>e; for all
of the smallest disorder variable among those which are eli-=2, . .. L. This condition is, e.g., imposed in the first time
gible for growth(which we shall callactive variables here- step of the extremal dynamics for the Bak and Sneggs)
aften. In invasion percolation, a variable becomes activemodel. With the conditiorE = e,, the distribution of theg; is
only when it is “touched” by the growing cluster. The past no longer that of independent variables. A straightforward
growth history of extremal dynamics builds up memory ef-calculation shows that themargina) distribution of one of
fects in the system. These can be encoded into the distribdhe variables is
tion pi(X1,X2, ... X, of the active variables, which ac-
quires an explicit time dependence. The crucial point, which
we are going to address here, is that it is assumed that the
collective probability density of the disorder at any tirhe
factorizes: while that of a pair of variables is

h Before entering the detailed discussion of this approxima-
dion, it is worthwhile spending some more words on the na-
ure of the time dependence induced by extremal dynamics.
et us assign an age=t—t, to the variablex; . Heret is

he actual time and, is the time at which the variable,
énecame active. Clearly, variables that became active at the
same time, and which have the same agexperienced the

L
Dl(X)Zm[l—(l—X)Lfl]
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L+1 L 1 L1y L
P2(%y)= =7 {0y =X)[1—(1=X)"]+ O(x~Y) Py =13 kE s ; Oi(xy)
=7+ J=k+

X[1=(1-y)"T

This is clearly not factorizable. However, it is easy to check ~ L .
that the correlation whereas fox>y, p.(y,X) is given by the same formula with

for x<y,

Oy (Y. Xx).
L 1 Now one can calculate the \(alue_ of
(eiej>—(ei><ej)=m~ Iz (2 ((e1—(€))(ex—(er))) and therefore the correlation buildup

between two variables im steps of the extremal dynamics.

. . . One has
vanishes a$ —oo. This suggests that the corrections to Eq.

(1) vanish in the limitL — o, 1 Kk
If, already at the first time step, the dynamics sets up a (x)k:f 0 (X)X dx= ——,
correlation between variables, it is compelling to show that 0 L+1
the correlation remains small &s—c0. Note thatL in mod- . k(i +1)
els like invasion percolation in radial geometry is the size of _ Y J
the cluster which equals the timée=L, so that the limit <Xy>k'j_fo Jo O O6y)xy dxdy=<L+ 1)(L+2)’
L—x is the asymptotic time limit in this case. Let us now
try to extend our analysis to the correlation between twahen
variablese; and e, with age 7, for a system of fixed size
L. Consider two variableg; and e, with ager for an inva- k(L—j+1)
sion percolation cluster of sizZe. Imagine to rank order the Uk,j:<xy>k,j_<x>k<y>j:m-
L variables from the smallest ménto the largest mag . Let
k; andk, be the ranking ok, ande;,, respectively. One has Then the correlation is the average of this for7 and
that ki> 7 for i=1,2 because at least uniform variables, j>k:
among thel, were found to be smaller tha®y and e,. We

want to compute the distribution @f . 1 T
The distribution of thekst amongL uniform variables is O 2 Lok 2y Ok
L-1 2 )
®k(x):|‘(k—1 11—yt K _Lirlre2r-2744L 1 .
12(L+2)(L+1)? L

Assuming that the order of the variablescan be any be-  Therefore one expects a correlation of ordér among two
tween7+1 andL (with equal probability, one might say yariables of the system.
that In order to support this result, we also performed numeri-
cal simulations. It is worth pointing out that correlations built
_ 2 0 up by extremal dynamics are global in the sense that they
pA(X)= L—7 54 K(X) depend only on the ages of the variables and not on their
spatial position. The persistence of activity in the dynamics
is the distribution of theg; . In this approximation, one finds ©Of @ particular model, however, builds a particular spatial
distribution of age variables and this yields a spatial correla-
1 L+7+1 tion. Therefore correlations can be investigated directly by
<€i>7=f pA(X)x dx=m. studying the spatial correlation among variables.
0 We performed numerical simulations of the simplest
. . .. ...model with extremal dynamics, the Bak and Sneppen model
Th‘?” we can add_ress the_questlon .Of what is the joint distrig, one dimension, and studied the behavior of spatial corre-
pqtlon_of .tWO. variables with age. F_|rst we recall that Fhe lations for different sized of the system. We follow the
joint distribution of thekth and thejth variable {>k) is method given in Ref[11], which is able to detect the pres-
[10] ence of very weak long rang@ower law correlations be-
tween the variableg; . We study the function

L

_ y-xT(L+1)
Ok = F G =T (L= + 1)

XXy —x)l TR (1)t

a<r>=i§1 (X —x), (4

wherex is the value assumed by tiéh variable andy that ~ wherer is the distancéin lattice unitg between the first and

of the jth. the last variable, ang=1/LS}_,x; is the mean value of the
The joint distribution ofe; ande, can again be computed quenched disordered variables. For variables with no long

by assuming that, apart from being bigger thak andj can  range correlationgthis is the case of quenched variables at

be any index, and therefore time t=0), one has
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FIG. 1. The temporal evolution of the functi(ﬂ(ur(r)z))l’2 in the BS model, for some values of the system sizg:L=128; (b)
L=512;(c) L=2048;(d) L=8192. The time ranges frotn=0 (no long range correlatioh$o a time step corresponding to the asymptotic
critical regime.

[<g(r)2>]1/2~rﬁ with 8=0.5, (5 validity of the method and in the steady state, for the differ-
ent values of.. In Table | we show the value of the exponent

where the mean is over the realizations of the disorder. Any3 @ t=0 and in the critical steady state for different sizes of
deviation from 0.5 in the scaling exponeishows the pres- (e System. As one can see, while the valuegofor the
ence of long range spatial correlations between quenchdd™Q (no long range correlationsase is stable as the size

variables. We performed numerical simulations of the Bak- Of the system grows, the values of the scaling exponent in
and Sneppen model for= 128,512,2048,8192. For each the steady state, where extremal dynamics built up correla-
value ofL we computed the functio((at(r)2>)1’2 for differ- tions between the variables, seem to converge in the limit

ent times, fromt=0 (no long range correlationgo a time L—oo toward the valugd=0.5. So, from numerical simula-

step corresponding to the stationary state of the system tONs we get
varies depending on the size of the system; typically it goes
up tot="5.0x 10° for L=2048,8192). To get a better statis-
tics we mediater(r)? over all the possible starting points
ro. In Figs. Xa-1(d) we show the behavior of
((o(r)?)*? at different times for the different sizes of the s
t=

TABLE I. Values of the scaling exponentg, for
L=128,512,2048,8192 at time=0 (no long range correlations
and in the steady state.

system. The falling down of(a(r)?))Y2 for large values of Psteay

r is not surprising, because one sees from Ej.that 128 0.48-0.02 0.62:0.02
o(r=L)=0. It is a finite size effect. We note that 512 0.50-0.02 0.58-0.02
(o (r)?)¥2 changes in time until it achieves a steady state2048 0.50-0.01 0.54-0.01
We computed by a least squares fit the scaling exponent @192 0.56-0.01 0.56-0.01

the smallr part of ((o(r)2))Y2 for t=0 (as a test of the
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lim BseagfL)=0.5, (6)  siond<1, for the one-dimensional BS model. This implies
L—o that the weight of active, correlated, variables vanishes in the

. L _ thermodynamic limit ag. ~ (@~ 90,
which supports qual!tatlvely our analytical results. S_hort In this paper we showed, both by an analytical argument
range spatial correlations C(.)UId eventually be present in OUnd by numerical simulations, that spatial correlations be-
extremal model, but they disappear after a rescaling of th? '

system. Therefore they are irrelevant for the critical proper-We.en variables in extremal models are a finite size effect
ties. which vanishes in the thermodynamic limit. This result sup-

Our results fit those of Ref4]. There it was shown that ports the basic assumption made in the quenched-stochastic
in the BS model for example, the asymptotic state is charadransformatior(5,9] and suggests that this mapping is exact

terized by a fractal set of active variables, with fractal dimen-n the limit L—oc of a large number of variables.
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